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Timeline

Start date: October 2016
End date: September 2019

Percent complete: 90%

Budget

Total project funding

- FY2018
- FY2019

S500K
S500K

Overview

Barriers Addressed

Energy density
Cycle life
Safety

Partners

Interactions/collaborations:
LBNL, UCB, ANL, Cambridge,
ORNL, PNNL, NCEM, ALS, SSRL

Project lead: Vincent Battaglia



Relevance/Objectives

Obtain fundamental understanding on performance-limiting
properties, phase transition mechanisms, kinetic barriers, and
instabilities in high-energy cathode materials

Develop strategies to improve solid-state charge transport and
optimize charge transfer at electrode-electrolyte interface

Discover and develop next-generation electrode materials based
on rational design as opposed to the conventional empirical
approaches



Date
December

2018

March 2019

June 2019

September
2019

Milestones

Milestones

Understand the interplay between cationic and
anionic redox processes in model transition-
metal (TM) oxides.

Characterize interfacial processes and surface
changes on anion-active model oxides.

Evaluate the effect of particle size/morphology
on oxygen redox chemistry and kinetics.

Develop design strategies to improve
performance of anion-active oxide cathodes.

Status

Completed

Completed

On
schedule

On
schedule



Approach/Strategy

Fundamental understanding of solid-state
chemistry, kinetic barriers and instabilities during

battery operation T -

High-quality model samples
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Technical Accomplishments: Overview

|. Fundamental understanding of anionic redox in Li-rich TM (LRTM) oxides and
its impact on cathode performance

a) Collective redox activities of TM cations and oxygen anions responsible for
high capacity in LRTM oxide cathodes

b) O redox increases capacity but reduces cycling stability and rate capability

Il. What influences stability of LRTM oxide cathodes with O redox?
a) Bulk strategies to increase stability of O redox
* Effect of redox-inactive TM
* Effect of anion substitution
b) Surface engineering approaches to stabilize anion-active LRTM oxides
* Synthesis of LRTM oxides stabilized by surface segregated TM

* Post-synthesis surface coating

This presentation only focuses on |) and Il a)



LRTM oxide single crystals synthesized
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* Phase-pure crystal samples of Li;,,(M’Mn),,0, (0.2<x<0.4, M"=Nb, Ta, Ti, W, Zr, or
combinations of) rock-salts synthesized by using a molten-salt method.



Local short-range ordering observed in Cation-
disordered rock-salt structure

Evidence for local short- Neutron PDF analysis
range ordering at particle- (NOMAD at SNS/ORNL)
level (TEM/EDX, NCEM) G. Chen et. al, Chem 4 (9), 2108 (2018)
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Combined TM and O redox leads to high capacity

Resonant Inelastic
X-ray Scattering
Mapping (RIXS,
with W. Yang, ALS
beamline 8.0.1)
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* Mn redox contributes 120 mAh/g with 0.4 Li* extraction at lower voltages.

* O redox contributes 140 mAh/g at higher voltages.

G. Chen et. al, Chemistry of Materials 30, 1655 (2018)



Cycling stability correlated to extent of O redox
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* Cycling capacity increases while stability (capacity and average discharge voltage)
decreases with increasing involvement of O redox at high voltages.



Band energy (relative)

Influence of redox-inactive TM

M = Li and TM (redox active and inactive)
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A. Urban et. al, Phys. Rev. Lett. 119, 176402 (2017)

Redox-inactive TMs are d° TMs (Ti**, Mo®*,
V>*, Nb>*, Zr#* etc.) essential in formation
of disordered rock-salt crystal structure.
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* Redox-inactive TMs also have a critical role in
electrochemical performance of LRTM oxides.



Redox-inactive TM influences cycling stability
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 Samples with the same redox-active Mn content but varying redox-inactive TMs were selected for

further evaluation: Li, ;Nb, ;Mn, ,0, (LNMO), Li, ,cNb, ;sTi; ,Mn, ,0, (LNTMO) and Li, ,Ti, ,Mn, ,0,
(LTMO).

* Redox-inactive Ti provides stabilizing effect in electrochemical performance of oxide cathodes.



Redox-inactive TM influences O loss

Operando Differential Electrochemical Mass Spectroscopy
(DEMS, with B. McCloskey, UC Berkeley)
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Oxygen gas release detected upon first charge to ~4.3 V.

Oxygen loss in LTMO is ~ 10x less compared to that in LNMO.
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Redox-inactive TM influences chemical stability
Mn K-edge hard XAS spectra/mapping (SSRL beamline 2-2)
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Cycling-induced bulk Mn reduction
less severe in LTMO.



Responses to Previous Year Reviewers’ Comments

No reviewer comments received from 2018 DOE Merit Review



Collaborations

Prof. Gerd Ceder and Kristin Persson (UC
Berkeley) — modeling

Drs. Marca Doeff (LBNL), Dennis Nordlund

and Yijin Liu (SSRL), and APS — synchrotron

in situ and ex situ XRD, XAS and FF-TXM-
XANES studies

Dr. Wanli Yang (ALS) — synchrotron XAS
and RIXS studies

Prof Bryan McCloskey (UC Berkeley) —
DEMS

Drs. Jagjit Nanda, Ashfia Hug (ORNL) and
Jack Chen (Chinese Academy of Sciences,
CAS and ANSTO) — neutron diffraction and
PDF studies

Dr. Chongmin Wang (PNNL) — STEM/EELS
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Remaining Challenges and Barriers

e Comprehensive understanding on the selection rules of redox-
active and redox-inactive TMs in LRTM oxides necessary in order
to optimize composition for cathode performance and stability.

e Surface chemistry of LRTM oxides — rock-salt nature of the
samples makes it difficult to effectively monitor the formation of
surface layer due to O loss and TM migration as well as its
evolution with cycling.

e Further fundamental understanding of performance limiting
mechanisms/processes in newer LRTM oxide cathodes needed in
order to evaluate how O redox can be utilized to develop
commercially viable high-energy cathodes



Proposed Future Work

Obtain further understanding on the interplay between cation and anion
redox processes in LRTM oxides and how redox-inactive TM modulate O
redox and overall stability.

Explore techniques to investigate surface chemistry of LRTM oxides,
particularly the formation of surface layer due to O loss and TM
migration, how the layer thickness evolves with cycling and what impact
it has on cathode performance.

Develop strategies to design and protect LRTM oxide surface against side
reactions (particularly oxygen loss), chemical and structural instabilities.

Obtain comprehensive understanding on performance limiting
mechanisms/processes in LRTM oxide cathodes and develop mitigating
approaches to address the identified issues.

Provide material design insights on how to balance capacity and stability
of LRTM oxide cathodes.

“Any proposed future work is subject to changes based on funding levels.”



Summary

Developed approaches to synthesize high-quality LRTM oxide model
samples for diagnostic studies.

Experimentally demonstrated the correlation in the extent of oxygen
redox, charge storage capacity, cycling stability and rate capability of
LRTM oxide cathodes.

Elucidated the role of redox-inactive TM in modulating O redox
activities, chemical stability and electrochemical performance of
LRTM oxide cathodes.

Investigated strategies to stabilize O redox and mitigate the capacity
and stability trade-offs when utilizing oxygen redox process in LRTM
oxide cathodes.



Technical Back-Up Slides



Rate capability correlated to extent of O redox
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* Oxygen redox has poor kinetics and repeated cycling involving oxygen reduces TM redox

kinetics as well.

 Significant capacity recovery at slower rate — kinetic barrier major source of degradation.



Pristine sample characterization
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*  LNMO, LNTMO and LTMO crystal samples are phase-pure rock-salts with similar size

and morphology.



Redox-inactive TM influences surface chemical

stability
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Cycling leads to
reduction of surface
Mn in both LNMO
and LTMO.

Surface reduction
less severe in LTMO
than that in LNMO.



Effect of redox-inactive TM on surface and bulk
chemical stability

Mn K-edge hard XAS
(SSRL beamlme 2-2)
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from K-edge and
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energies,
respectively.

With cycling,
surface Mn more
reduced than
bulk.

Ti shows
stabilizing effect

in both bulk and
surface reduction.



